какие устройства входят в состав графического адаптера
Устройство современной видеокарты
Сейчас практически все компьютеры оснащены дискретной видеокартой. С помощью данного устройства создается видимое на экране монитора изображение. Комплектующее это далеко не простое, а состоит из многих деталей, формирующих единую рабочую систему. В этой статье мы постараемся подробно рассказать обо всех компонентах современной видеокарты.
Из чего состоит видеокарта
Сегодня мы рассмотрим именно современные дискретные видеокарты, ведь интегрированные имеют совсем другую комплектацию и, в основном, они встроены в процессор. Дискретный графический адаптер представлен в виде печатной платы, которая вставляется в соответствующий разъем расширения. Все компоненты видеоадаптера расположены на самой плате в определенном порядке. Давайте подробнее разберем все составные части.
Графический процессор
В самом начале нужно поговорить о самой важной детали в видеокарте – GPU (графический процессор). От данного компонента зависит быстродействие и мощность всего устройства. В его функциональность входит обработка команд, связанных с графикой. Графический процессор берет на себя выполнение определенных действий, за счет чего снижается нагрузка на ЦП, освобождая его ресурсы для других целей. Чем современнее видеокарта, тем мощность установленного в ней GPU больше, она может превосходить даже центральный процессор благодаря наличию множества вычислительных блоков.
Видеоконтроллер
За генерацию картинки в памяти отвечает видеоконтроллер. Он посылает команды на цифро-аналоговый преобразователь и проводит обработку команд ЦП. В современной карточке встроенно несколько компонентов: контроллер видеопамяти, внешней и внутренней шины данных. Каждый компонент функционирует независимо друг от друга, позволяя осуществлять одновременное управление экранами дисплеев.
Видеопамять
Для хранения изображений, команд и промежуточных не видимых на экране элементов необходимо определенное количество памяти. Поэтому в каждом графическом адаптере присутствует постоянный объем памяти. Она бывает разных типов, отличающихся по своей скорости работы и частоте. Тип GDDR5 на данный момент является самым популярным, используется во многих современных карточках.
Однако еще стоит учитывать, что помимо встроенной в видеокарту памяти новые устройства задействуют и ОЗУ, установленную в компьютере. Для доступа к ней используется специальный драйвер через шину PCIE и AGP.
Цифро-аналоговый преобразователь
Видеоконтроллер формирует изображение, однако его нужно преобразовать в необходимый сигнал с определенными уровнями цвета. Данный процесс выполняет ЦАП. Он построен в виде четырех блоков, три из которых отвечают за преобразование RGB (красный, зеленый и синий цвет), а последний блок хранит в себе информацию о предстоящей коррекции яркости и гаммы. Один канал работает на 256 уровнях яркости для отдельных цветов, а в сумме ЦАП отображает 16,7 миллионов цветов.
Постоянное запоминающее устройство
ПЗУ хранит в себе необходимые экранные элементы, информацию с BIOS и некоторые системные таблицы. Видеоконтроллер никак не задействуется вместе с постоянным запоминающим устройством, обращение к нему происходит только со стороны ЦП. Именно благодаря хранению информации с BIOS видеокарта запускается и функционирует еще до полной загрузи ОС.
Система охлаждения
Как известно, процессор и графическая карта являются самыми горячими комплектующими компьютера, поэтому для них необходимо охлаждение. Если в случае с ЦП кулер устанавливается отдельно, то в большинство видеокарт вмонтирован радиатор и несколько вентиляторов, что позволяет сохранить относительно низкую температуру при сильных нагрузках. Некоторые мощные современные карточки очень сильно греются, поэтому для их охлаждения используется более мощная водяная система.
Интерфейсы подключения
Современные графические карты оснащены преимущественно по одному разъему HDMI, DVI и Display Port. Данные выводы являются самыми прогрессивными, быстрыми и стабильными. Каждый из этих интерфейсов имеет свои преимущества и недостатки, с чем вы можете подробно ознакомиться в статьях на нашем сайте.
В этой статье мы подробно разобрали устройство видеокарты, детально рассмотрели каждый компонент и выяснили его роль в устройстве. Надеемся, что предоставленная информация была полезной и вы смогли узнать что-то новое.
Помимо этой статьи, на сайте еще 12384 инструкций.
Добавьте сайт Lumpics.ru в закладки (CTRL+D) и мы точно еще пригодимся вам.
Отблагодарите автора, поделитесь статьей в социальных сетях.
Видеокарта: параметры и компоненты
Видеокарта – компонент архитектуры современного ПК, отвечает за преобразование графической информации в видеосигнал для монитора. Видеокарта представляет собой плату расширения, которая устанавливается в специальный слот (PCI-Express) материнской платы. Также видеокарта может быть встроенной, то есть, входить в состав северного моста чипсета материнской платы или быть интегрированной в центральный процессор.
Компоненты видеокарты
Графический процессор, GPU
Является основой видеокарты, отвечает за вычислительные функции, связанные с обработкой трёхмерной графики, тем самым высвобождает ресурсы центрального процессора. Именно от графического процессора зависит производительность видеокарты.
Видеоконтроллер
Отвечает за формирование изображения в видеопамяти, даёт команды RAMDAC на формирование сигналов развёртки для монитора и осуществляет обработку запросов центрального процессора. Современные видеокарты имеют не менее двух видеоконтроллеров, работающих независимо друг от друга и управляющих одновременно одним или несколькими дисплеями каждый.
Видеопамять
Служит кадровым буфером, в который помещаются изображения, генерируемые графическим процессором перед последующим выводом на экран монитора, а также для хранения промежуточных данных связанных с 3D-вычислениями. Видеокарты комплектуются памятью типа GDDR3, GDDR4 и GDDR5. Следует также иметь в виду, что помимо видеопамяти, находящейся на видеокарте, современные графические процессоры могут использовать в своей работе часть общей системной памяти компьютера.
Цифро-аналоговый преобразователь, RAMDAC
RAMDAC необходим для преобразования изображения, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на аналоговый монитор. Большинство цифро-аналоговых преобразователей имеют разрядность 8 бит на канал, что даёт 256 уровней яркости на каждый основной цвет — 16,7 млн. цветов.
Видео-BIOS
Постоянное запоминающее устройство, в которое записаны: экранные шрифты, служебные таблицы и т. п. Видео-BIOS не используется видеоконтроллером напрямую — к нему обращается только центральный процессор. Информация, которая хранится в видео-BIOS применяется для инициализации и работы видеокарты до загрузки основной операционной системы, а также содержит системные данные, которые могут читаться и интерпретироваться видеодрайвером в процессе работы.
Система охлаждения
Предназначена для сохранения температурного режима видеопроцессора и видеопамяти в допустимых пределах.
Параметры видеокарты
Частота графического процессора (МГц) — тактовая частота ядра, во многом определяет производительность видеосистемы.
Тип видеопамяти (GDDR, GDDR2, GDDR3, GDDR4, GDDR5) — определяет частоту, разрядность шины памяти видеокарты.
Объём видеопамяти (Мб) — чем больше объём, тем большее число кадров способен сформировать графический процессор за короткий промежуток времени.
Частота видеопамяти (МГц) — чем выше частота работы видеопамяти, тем выше общая производительность видеокарты.
Ширина шины видеопамяти — указывает на количество бит (64, 128, 256) информации, передаваемой за такт.
Интерфейс — разъем, для установки видеокарты, на материнской плате (PCI-Express).
Количество поддерживаемых мониторов — одновременное подключение нескольких устройств.
Максимальное разрешение — количество точек, по горизонтали и по вертикали, при построении изображения графическим процессором видеокарты.
Число универсальных процессоров — шейдерные конвейеры, отвечающие за расчет цветов и геометрических структур.
Число текстурных блоков — выполняют выборку и фильтрацию текстур, а также наложение текстур на поверхности геометрических объектов.
Число блоков растеризации — отвечает за финальный этап обработки изображения (сглаживание, фильтрация), а также за запись обработанного изображения в буфер видеокарты.
Версия шейдеров — чем выше версия шейдеров, тем больше у видеокарты возможностей по созданию специальных эффектов.
Поддержка:
Разъемы видеокарты:
Видеодрайвер
Специальное программное обеспечение, поставляемое производителем видеокарты и загружаемое в процессе запуска операционной системы. Видеодрайвер выполняет функции интерфейса между системой с запущенными в ней приложениями и видеоадаптером.
Электронное пособие Гребенников
воскресенье, 20 мая 2012 г.
Тест по теме «Кодирование и обработка графической информации»
Вариант 1
1. Одной из основных функций графического редактора является:
1) масштабирование изображений;
2) хранение кода изображения;
3) создание изображений;
4) просмотр и вывод содержимого видеопамяти.
2. Элементарным объектом, используемым в растровом графическом редакторе,
является:
1) точка (пиксель);
2) объект (прямоугольник, круг и т.д.);
3) палитра цветов;
4) знакоместо (символ
3. Сетка из горизонтальных и вертикальных столбцов, которую на экране образуют
пиксели, называется:
1) видеопамять;
2) видеоадаптер;
3) растр;
4) дисплейный процессор;
4. Графика с представлением изображения в виде совокупности объектов
называется:
1) фрактальной;
2) растровой;
3) векторной;
4) прямолинейной.
5. Пиксель на экране дисплея представляет собой:
1) минимальный участок изображения, которому независимым образом можно
задать цвет;
2) двоичный код графической информации;
3) электронный луч;
4) совокупность 16 зерен люминофора.
6. Видеоконтроллер – это:
1) дисплейный процессор;
2) программа, распределяющая ресурсы видеопамяти;
3) электронное энергозависимое устройство для хранения информации о
графическом изображении;
4) устройство, управляющее работой графического дисплея.
7. Цвет точки на экране дисплея с 16-цветной палитрой формируется из сигналов:
1) красного, зеленого и синего;
2) красного, зеленого, синего и яркости;
3) желтого, зеленого, синего и красного;
4) желтого, синего, красного и яркости.
8. Какой способ представления графической информации экономичнее по
использованию памяти:
1) растровый;
2) векторный.
Тест по теме «Кодирование и обработка графической информации»
Вариант 2
1. Кнопки панели инструментов, палитра, рабочее поле, меню образуют:
1) полный набор графических примитивов графического редактора;
2) среду графического редактора;
3) перечень режимов работы графического редактора;
4) набор команд, которыми можно воспользоваться при работе с графическим
редактором.
2. Наименьшим элементом поверхности экрана, для которого могут быть заданы
адрес, цвет и интенсивность, является:
1) символ;
2) зерно люминофора;
3) пиксель;
4) растр.
3. Деформация изображения при изменении размера рисунка – один из недостатков:
1) векторной графики;
2) растровой графики.
4. Видеопамять – это:
1) электронное устройство для хранения двоичного кода изображения,
выводимого на экран;
2) программа, распределяющая ресурсы ПК при обработке изображения;
3) устройство, управляющее работой графического дисплея;
4) часть оперативного запоминающего устройства.
5. Графика с представлением изображения в виде совокупностей точек называется:
1) прямолинейной;
2) фрактальной;
3) векторной;
4) растровой.
6. Какие устройства входят в состав графического адаптера?
1) дисплейный процессор и видеопамять;
2) дисплей, дисплейный процессор и видеопамять;
3) дисплейный процессор, оперативная память, магистраль;
4) магистраль, дисплейный процессор и видеопамять.
7. Примитивами в графическом редакторе называют:
1) среду графического редактора;
2) простейшие фигуры, рисуемые с помощью специальных инструментов
графического редактора;
3) операции, выполняемые над файлами, содержащими изображения, созданные
в графическом редакторе;
4) режимы работы графического редактора.
8. Какое расширение имеют файлы графического редактора Paint?
1) exe;
2) doc;
3) bmp;
4) com.
Графический адаптер
Видеока́рта (известна также как графи́ческая пла́та, графи́ческая ка́рта, видеоада́птер) (англ. videocard ) — устройство, преобразующее изображение, находящееся в памяти компьютера, в видеосигнал для монитора.
Обычно видеокарта является платой расширения и вставляется в разъём расширения, универсальный (ISA, VLB, PCI, PCI-Express) или специализированный (
Содержание
История
Одним из первых графических адаптеров для IBM PC стал MDA (Monochrome Display Adapter) в 1981 году. Он работал только в текстовом режиме с разрешением 80×25 символов (физически 720×350 точек) и поддерживал пять атрибутов текста: обычный, яркий, инверсный, подчёркнутый и мигающий. Никакой цветовой или графической информации он передавать не мог, и то, какого цвета будут буквы, определялось моделью использовавшегося монитора. Обычно они были чёрно-белыми, янтарными или изумрудными. Фирма Hercules в 1982 году выпустила дальнейшее развитие адаптера MDA, видеоадаптер графическое разрешение 720×348 точек и поддерживал две графические страницы. Но он всё ещё не позволял работать с цветом.
Первой цветной видеокартой стала IBM и ставшая основой для последующих стандартов видеокарт. Она могла работать либо в текстовом режиме с разрешениями 40×25 и 80×25 (матрица символа — 8×8), либо в графическом с разрешениями 320×200 или 640×200. В текстовых режимах доступно 256 атрибутов символа — 16 цветов символа и 16 цветов фона (либо 8 цветов фона и атрибут мигания), в графическом режиме 320×200 было доступно четыре палитры по четыре цвета каждая, режим высокого разрешения 640×200 был монохромным. В развитие этой карты появился
Стоит заметить, что интерфейсы с монитором всех этих типов видеоадаптеров были цифровые, MDA и HGC передавали только светится или не светится точка и дополнительный сигнал яркости для атрибута текста «яркий», аналогично CGA по трём каналам (красный, зелёный, синий) передавал основной видеосигнал, и мог дополнительно передавать сигнал яркости (всего получалось 16 цветов), EGA имел по две линии передачи на каждый из основных цветов, то есть каждый основной цвет мог отображаться с полной яркостью, 2/3, или 1/3 от полной яркости, что и давало в сумме максимум 64 цвета.
В ранних моделях компьютеров от IBM PS/2, появляется новый графический адаптер
Потом IBM пошла ещё дальше и сделала
С 1991 года появилось понятие VBE (VESA BIOS Extention — расширение VESA). SVGA воспринимается как фактический стандарт видеоадаптера где-то с середины 1992 года, после принятия ассоциацией VESA (Video Electronics Standart Association — ассоциация стандартизации видео-электроники) стандарта VBE версии 1.0. До того момента практически все видеоадаптеры SVGA были несовместимы между собой.
Графический пользовательский интерфейс, появившийся во многих операционных системах, стимулировал новый этап развития видеоадаптеров. Появляется понятие «графический ускоритель» (graphics accelerator). Это видеоадаптеры, которые производят выполнение некоторых графических функций на аппаратном уровне. К числу этих функций относятся, перемещение больших блоков изображения из одного участка экрана в другой (например при перемещении окна), заливка участков изображения, рисование линий, дуг, шрифтов, поддержка аппаратного курсора и т. п. Прямым толчком к развитию столь специализированного устройства явилось то, что графический пользовательский интерфейс несомненно удобен, но его использование требует от центрального процессора немалых вычислительных ресурсов, и современный графический ускоритель как раз и призван снять с него львиную долю вычислений по окончательному выводу изображения на экран.
Устройство
Современная видеокарта состоит из следующих частей:
Правильная и полнофункциональная работа современного графического адаптера обеспечивается с помощью видеодрайвера — специального программного обеспечения, поставляемого производителем видеокарты и загружаемого в процессе запуска операционной системы. Видеодрайвер выполняет функции интерфейса между системой с запущенными в ней приложениями и видеоадаптером. Так же как и видео-BIOS, видеодрайвер организует и программно контролирует работу всех частей видеоадаптера через специальные регистры управления, доступ к которым происходит через соответствующую шину.
Характеристики
Поколения 3D-ускорителей
Интерфейс
Первое препятствие к повышению быстродействия видеосистемы — это интерфейс передачи данных, к которому подключён видеоадаптер. Как бы ни был быстр процессор видеоадаптера, большая часть его возможностей останется незадействованной, если не будут обеспечены соответствующие каналы обмена информацией между ним, центральным процессором, оперативной памятью компьютера и дополнительными видеоустройствами. Основным каналом передачи данных является, конечно, интерфейсная шина материнской платы, через которую обеспечивается обмен данными с центральным процессором и оперативной памятью. Самой первой шиной использовавшейся в IBM PC была XT-Bus, она имела разрядность 8 бит данных и 20 бит адреса и работала на частоте 4,77 МГц. Далее появилась шина VLB (VESA Local Bus — локальная шина стандарта VESA). Работая на внешней тактовой частоте процессора, которая составляла от 25 МГц до 50 МГц, и имея разрядность 32 бит, шина VLB обеспечивала пиковую пропускную способность около 130 МиБ/с. Этого уже было более чем достаточно для всех существовавших приложений, помимо этого возможность использования её не только для видеоадаптеров, наличие трёх слотов подключения и обеспечение обратной совместимости с ISA (VLB представляет собой просто ещё один 116 контактный разъём за слотом ISA) гарантировали ей достаточно долгую жизнь и поддержку многими производителями чипсетов для материнских плат, и периферийных устройств, даже несмотря на то, что при частотах 40 МГц и 50 МГц обеспечить работу даже двух устройств подключенных к ней представлялось проблематичным из-за чрезмерно высокой нагрузки на каскады центрального процессора (ведь большинство управляющих цепей шло с VLB на процессор напрямую, безо всякой буферизации). И всё-таки, с учётом того, что не только видеоадаптер стал требовать высокую скорость обмена информацией, и явной невозможности подключения к VLB всех устройств (и необходимостью наличия межплатформенного решения, не ограничивающегося только PC), была разработана шина
С появлением процессоров Intel Pentium II, и серьёзной заявкой PC на принадлежность к рынку высокопроизводительных рабочих станций, а так же с появлением 3D-игр со сложной графикой, стало ясно, что пропускной способности PCI в том виде, в каком она существовала на платформе PC (обычно частота 33 МГц и разрядность 32 бит), скоро не хватит на удовлетворение запросов системы. Поэтому фирма Intel решила сделать отдельную шину для графической подсистемы, несколько модернизировала шину PCI, обеспечила новой получившейся шине отдельный доступ к памяти с поддержкой некоторых специфических запросов видеоадаптеров, и назвала это PCI Express версий 1.0 и 2.0, это последовательный, в отличие от AGP, интерфейс, его пропускная способность может достигать нескольких десятков ГБ/с. На данный момент произошёл практически полный отказ от шины AGP в пользу PCI Express. Однако стоит отметить, что некоторые производители до сих предлагают достаточно современные по своей конструкции видеоплаты с интерфейсами PCI и AGP — во многих случаях это достаточно простой путь резко повысить производительность морально устаревшего ПК в некоторых графических задачах.
Видеопамять
Кроме шины данных, второе узкое место любого видеоадаптера — это пропускная способность (англ. bandwidth ) памяти самого видеоадаптера. Причём, изначально проблема возникла даже не столько из-за скорости обработки видеоданных (это сейчас часто стоит проблема информационного «голода» видеоконтроллера, когда он данные обрабатывает быстрее, чем успевает их читать/писать из/в видеопамять), сколько из-за необходимости доступа к ним со стороны видеопроцессора, центрального процессора и RAMDAC’а. Дело в том, что при высоких разрешениях и большой глубине цвета для отображения страницы экрана на мониторе необходимо прочитать все эти данные из видеопамяти и преобразовать в аналоговый сигнал, который и пойдёт на монитор, столько раз в секунду, сколько кадров в секунду показывает монитор. Возьмём объём одной страницы экрана при разрешении 1024×768 точек и глубине цвета 24 бит (True Color), это составляет 2,25 МиБ. При частоте кадров 75 Гц необходимо считывать эту страницу из памяти видеоадаптера 75 раз в секунду (считываемые пикселы передаются в RAMDAC и он преобразовывает цифровые данные о цвете пиксела в аналоговый сигнал, поступающий на монитор), причём, ни задержаться, ни пропустить пиксел нельзя, следовательно, номинально потребная пропускная способность видеопамяти для данного разрешения составляет приблизительно 170 МиБ/с, и это без учёта того, что необходимо и самому видеоконтроллеру писать и читать данные из этой памяти. Для разрешения 1600x1200x32 бит при той же частоте кадров 75 Гц, номинально потребная пропускная составляет уже 550 МиБ/с, для сравнения, процессор Pentium-2 имел пиковую скорость работы с памятью 528 МиБ/с. Проблему можно было решать двояко — либо использовать специальные типы памяти, которые позволяют одновременно двум устройствам читать из неё, либо ставить очень быструю память. О типах памяти и пойдёт речь ниже.
Matrox и Number Nine, поскольку требует специальных методов доступа и обработки данных. Наличие всего одного производителя данного типа памяти (Samsung) сильно сократило возможности её использования. Видеоадаптеры, построенные с использованием данного типа памяти, не имеют тенденции к падению производительности при установке больших разрешений и частот обновления экрана, на однопортовой же памяти в таких случаях RAMDAC всё большее время занимает шину доступа к видеопамяти и производительность видеоадаптера может сильно упасть.
EDO DRAM (Extended Data Out DRAM — динамическое ОЗУ с расширенным временем удержания данных на выходе) — тип памяти с элементами конвейеризации, позволяющий несколько ускорить обмен блоками данных с видеопамятью приблизительно на 25 %.
SGRAM (Synchronous Graphics RAM — синхронное графическое ОЗУ) вариант DRAM с синхронным доступом. В принципе, работа SGRAM полностью аналогична SDRAM, но дополнительно поддерживаются ещё некоторые специфические функции, типа блоковой и масочной записи. В отличие от VRAM и WRAM, SGRAM является однопортовой, однако может открывать две страницы памяти как одну, эмулируя двухпортовость других типов видеопамяти.
MDRAM (Multibank DRAM — многобанковое ОЗУ) — вариант DRAM, разработанный фирмой MoSys, организованный в виде множества независимых банков объёмом по 32 КиБ каждый, работающих в конвейерном режиме.
Какие устройства входят в состав графического адаптера?
Графическая видеокарта имеет в своем составе несколько устройств. Во всех компьютерных устройствах это системная плата. На системной плате распаивается процессор — видеопроцессор, собственная память которая называется видеопамять. Современные видеокарты имеют 3d ускоритель, соответственно, собственный модуль питания, который регулирует напряжение на всех устройствах, а также на вентиляторе кулера. На процессор устанавливаются кулер, нередко ещё и на память видеокарты. Кулер изготавливаются из алюминия или меди на нём установлен 1, 2 или 3 вентилятора.
Видеокарты бывают: Pci, Agp или Pci express. Первые две практически уже не производятся. Наиболее популярный слот для видеокарты Рci express. Устройства описаны для внешней видеокарты, существует внутренняя видеокарта, которая встроена в процессор. У них есть всё кроме собственной памяти. Память используется системная, который в материнской плате. Также питание регулируется блоком питания компьютера. Если это системный блок, встроенная видеокарта имеет свойство отключения в БИОС-е. Приоритетная считается внешняя видеокарта которая вставляется в слот.
Также существует видеокарты которые распаиваются на материнской плате, особенно это относится к системным платам и процессорам Аmd. Они считают лишним встраивать видеокарту в процессор. Чего не скажешь об Intel. Данный бренд старается встроить видеокарты практически во все линейки процессоров. Соответственно это ухудшает теплоотвод, но значительно удешевляет компьютер, если человек не пользуется 3d графикой. Он не играет в игры, а сидит только в интернете, занимаются просмотром видеофильмов или работает с офисом, ему не нужна внешняя видеокарта, достаточно той, которая в процессоре.
Хотя видеокарта многофункциональное устройство, всё зависит от конструктива.