лучшие учебники по теории вероятности и математической статистике

Лучшие учебники по теории вероятности и математической статистике

лучшие учебники по теории вероятности и математической статистике. Смотреть фото лучшие учебники по теории вероятности и математической статистике. Смотреть картинку лучшие учебники по теории вероятности и математической статистике. Картинка про лучшие учебники по теории вероятности и математической статистике. Фото лучшие учебники по теории вероятности и математической статистике

лучшие учебники по теории вероятности и математической статистике. Смотреть фото лучшие учебники по теории вероятности и математической статистике. Смотреть картинку лучшие учебники по теории вероятности и математической статистике. Картинка про лучшие учебники по теории вероятности и математической статистике. Фото лучшие учебники по теории вероятности и математической статистике

Справочник по теории вероятностей и математической статистике [1985] Королюк

Справочник представляет собой расширенное и переработанное издание книги «Справочник по теории вероятностей и математической статистике» под редакцией В. С. Королюка, вышедшей в 1978 г. в издательстве «Наукова думка». По широте охвата основных идей, методов и конкретных результатов современной теории вероятностей, теории случайных процессов и отчасти математической статистики «Справочник» является единственным изданием подобного рода. Для научных работников и инженеров.

лучшие учебники по теории вероятности и математической статистике. Смотреть фото лучшие учебники по теории вероятности и математической статистике. Смотреть картинку лучшие учебники по теории вероятности и математической статистике. Картинка про лучшие учебники по теории вероятности и математической статистике. Фото лучшие учебники по теории вероятности и математической статистике

Надежность и проектирование систем [1980] Капур

В книге рассматривается широкий круг вопросов, связанных с анализом и синтезом надежных систем различного технического назначения. Такой анализ и синтез осуществляются на всех этапах создания системы — от проектирования и производства до испытаний и эксплуатации. Большое внимание уделено вероятностным оценкам безопасности при воздействии случайных нагрузок на изделия со случайными прочностными характеристиками.Книга предназначена для специалистов, занимающихся разработкой радиоэлектронной и электромеханической аппаратуры. Может служить пособием для студентов старших курсов технических вузов.

лучшие учебники по теории вероятности и математической статистике. Смотреть фото лучшие учебники по теории вероятности и математической статистике. Смотреть картинку лучшие учебники по теории вероятности и математической статистике. Картинка про лучшие учебники по теории вероятности и математической статистике. Фото лучшие учебники по теории вероятности и математической статистике

Экстремальные комбинаторные задачи и их приложения [2006] Баранов, Стечкин

лучшие учебники по теории вероятности и математической статистике. Смотреть фото лучшие учебники по теории вероятности и математической статистике. Смотреть картинку лучшие учебники по теории вероятности и математической статистике. Картинка про лучшие учебники по теории вероятности и математической статистике. Фото лучшие учебники по теории вероятности и математической статистике

Кружок по теории вероятностей [2019] Высоцкий

Сборник составлен по материалам кружка МЦНМО, который проводился в 2015–2017 годах для школьников 8-9 классов. Задачи сгруппированы по занятиям, а занятия –– по темам. Последовательность занятий устроена так, что сборник имеет обучающий характер. Большинство новых терминов и методов вводится через задачи. В конце сборника даны ответы и указания к решению, а также алфавитный справочник. В справочник вошли разъяснения многих терминов, формул и методов с примерами, иногда – с доказательствами. При этом предполагается, что у читателя имеются базовые знания теории вероятностей, хотя бы в объеме школьного учебника 7-8 классов. Сборник предназначен для мотивированных школьников, интересующихся студентов, а также для руководителей кружков по теории вероятностей. Может быть использован для подготовки к олимпиадам по теории вероятностей и статистике.

лучшие учебники по теории вероятности и математической статистике. Смотреть фото лучшие учебники по теории вероятности и математической статистике. Смотреть картинку лучшие учебники по теории вероятности и математической статистике. Картинка про лучшие учебники по теории вероятности и математической статистике. Фото лучшие учебники по теории вероятности и математической статистике

Руководство к решению задач по теории вероятностей и математической статистике [1979] Гмурман

В пособии приведены необходимые теоретические сведения и формулы, даны решения типовых задач, помещены задачи для самостоятельного решения, сопровождающиеся ответами и указаниями. Большое внимание уделено методам статистической обработки экспериментальных данных. Настоящее издание дополнено cледующими новыми разделами: ранговая корреляция, моделирование случайных величин, случайные функции. Предназначается для студентов втузов, может быть полезно лицам, применяющим вероятноствые и статистические методы при решении практических задач. [3-е изд., перераб. и доп.]

В пособии (8-е изд. — 2003 г.) приведены необходимые теоретические сведения и формулы, даны решения типовых задач, помещены задачи для самостоятельного решения, сопровождающиеся ответами и указаниями. Большое внимание уделено методам статистической обработки экспери­ментальных данных.

лучшие учебники по теории вероятности и математической статистике. Смотреть фото лучшие учебники по теории вероятности и математической статистике. Смотреть картинку лучшие учебники по теории вероятности и математической статистике. Картинка про лучшие учебники по теории вероятности и математической статистике. Фото лучшие учебники по теории вероятности и математической статистике

Измерение вероятностных характеристик случайных процессов с применением стохастических вычислительных устройств [1982] Корчагин, Кравцов, Садомов

Книга посвящена вопросам проектирования и использования стохастических вычислительных устройств для измерения вероятностных характеристик случайных процессов. Также рассмотрены вопросы точности оценки значений вероятностных характеристик, погрешности измерений, дано описание принципов действия и структур устройств, систем измерений характеристик.Книга может быть полезна для специалистов, занятых проектированием и эксплуатацией измерительной и вычислительной техники, а также для студентов вузов.

лучшие учебники по теории вероятности и математической статистике. Смотреть фото лучшие учебники по теории вероятности и математической статистике. Смотреть картинку лучшие учебники по теории вероятности и математической статистике. Картинка про лучшие учебники по теории вероятности и математической статистике. Фото лучшие учебники по теории вероятности и математической статистике

Модели в теории вероятностей [2012] Федоткин

Изложены фундаментальные и прикладные основы современной теории вероятностного моделирования реальных процессов и явлений. Основное внимание уделено проблеме математического задания и классификации реальных экспериментов, интуитивным понятиям и формализации допустимых, элементарных и наблюдаемых исходов, построению теоретико-множественной и вероятностной моделей, функциональным и числовым характеристикам измерителей исходов статистически устойчивых экспериментов. Характерной особенностью книги является наличие большого числа конкретных задач с подробными решениями и замечаниями с целью развития вероятностной интуиции. Для широкого круга преподавателей, научных работников, инженеров, аспирантов, магистров и студентов, использующих вероятностно-статистические методы в прикладных и теоретических исследованиях реальных случайных экспериментов с применением компьютерных технологий.

Эксперимент и его интуитивное представление.

Приведенные примеры говорят о большом разнообразии реальных экспериментов. Так, некоторые эксперименты проводятся непосредственно человеком, другие протекают без его участия, а человек выступает только в качестве наблюдателя и фиксатора происходящего. Это многообразие не позволяет дать точное или строго формализованное определение эксперимента. С другой стороны, в любой науке имеется ряд основных интуитивных понятий. Эти понятия не только не имеют точного определения, но и для каждого человека видоизменяются и усовершенствуются в течение всей его жизни. Так, например, в геометрии основными неопределяемыми (интуитивными) понятиями являются точка, прямая.

Глава 1.Основные понятия теории вероятностей и теоретико-множественная модель случайных экспериментов.
Глава 2.Вероятностные модели априорных экспериментов.
Глава 3.Унифицированная и локализованная вероятностные модели условных экспериментов.
Глава 4.Конечная последовательность причинно-независимых испытаний.
Глава 5.Простейшая форма последовательности зависимых испытаний.
Глава 6.Вероятностные модели измерителей исходов статистически устойчивого эксперимента.
Глава 7.Семейство измерителей исходов случайного эксперимента.
Глава 8.Числовые характеристики измерителей исходов случайных экспериментов.
Глава 9.Функциональная и статистическая зависимости между измерителями случайных экспериментов.
Глава 10.Некоторые наиболее распространенные законы распределения.
Глава 11.Аппроксимация случайных величин и их законов распределения.

лучшие учебники по теории вероятности и математической статистике. Смотреть фото лучшие учебники по теории вероятности и математической статистике. Смотреть картинку лучшие учебники по теории вероятности и математической статистике. Картинка про лучшие учебники по теории вероятности и математической статистике. Фото лучшие учебники по теории вероятности и математической статистике

Теория вероятностей и математическая статистика [2008] Кремер

Эта книга не только учебник, но и краткое руководство к решению задач. Излагаемые основы теории вероятностей и математической статистики сопровождаются большим количеством задач (в том числе экономических), приводимых с решениями и для самостоятельной работы. При этом упор делается на основные понятия курса, их теоретико-вероятностный смысл и применение. Приводятся примеры использования вероятностных и математико-статистических методов в задачах массового обслуживания и моделях финансового рынка.
Для студентов и аспирантов экономических специальностей и направлений, а также преподавателей вузов, научных сотрудников и экономистов.

Теория вероятностей и математическая статистика [2005] Кибзун, Наумов

Книга предназначена для начального ознакомления с основами теории вероятностей и математической статистики и развития навыков решения практических задач. Основное внимание уделяется краткости изложения полного курса «Теории вероятностей и математической статистики», состоящего из теоретического и практического материала. Структура изложения максимально приближена к лекционным и практическим занятиям. Пособие может одновременно играть роль учебника, задачника и справочника. Для преподавателей ВУЗов, инженеров и студентов технических и экономических специальностей.

Вероятность и статистика в примерах и задачах [3 тома] Кельберт, Сухов

Для освоения теории вероятностей и математической статистики тренировка в решении задач и выработка интуиции важны не меньше, чем изучение доказательств теорем; большое разнообразие задач по этому предмету затрудняет студентам переход от лекций к экзаменационным задачам, а от них — к практике. Ввиду того, что предмет этой книги критически важен и для современных приложений (финансовая математика, менеджмент, телекоммуникации, обработка сигналов, биоинформатика), так и для приложений классических (актуарная математика, социология, инженерия), авторы собрали большое количество упражнений, снабженных полными решениями. Эти решения адаптированы к нуждам и умениям учащихся. Для удобства усвоения текста авторы приводят в книге целый ряд основных математических фактов; кроме того, текст снабжен историческими отступлениями.

Том 1. Основные понятия теории вероятностей и математической статистики.

Часть А Вероятность
Глава 1. Дискретные пространства элементарных исходов
Глава 2. Непрерывные пространства элементарных исходов
Часть В Основы статистики
Глава 1. Оценивание параметров
Глава 2. Проверка гипотез
Глава 3. Задачи кембриджских «Математических треножников» к курсу «Статистика»

Том 2. Марковские цепи как отправная точка теории случайных процессов и их приложения.

Глава 1. Цепи Маркова с дискретным временем
Глава 2. Цепи Маркова с непрерывным временем
Глава 3. Статистика цепей Маркова с дискретным временем
Приложение I. Андрей Андреевич Марков и его время
Приложение II. Пирсон, Максвелл и другие знаменитые Кембриджские лауреаты: уроки, которые следует усвоить

Том 3. Теория информации и кодирования.

Глава 1. Основные понятия теории информации
Глава 2. Введение в теорию кодирования
Глава 3. Дальнейшие темы из теории кодирования
Глава 4. Дальнейшие темы из теории информации

Теория вероятностей и математическая статистика [2004] Гмурман

лучшие учебники по теории вероятности и математической статистике. Смотреть фото лучшие учебники по теории вероятности и математической статистике. Смотреть картинку лучшие учебники по теории вероятности и математической статистике. Картинка про лучшие учебники по теории вероятности и математической статистике. Фото лучшие учебники по теории вероятности и математической статистике

Вероятность в теоремах и задачах (с доказательствами и решениями). Книга 1 [2014] Ширяев

Настоящая книга является «решебником» задач из первых двух глав учебника А.Н.Ширяева «Вероятность-1» и задачника «Задачи по теории вероятностей». Добавлено также много новых задач. Приводимые доказательства и решения будут полезны как студентам и аспирантам, так и преподавателям, демонстрируя как следует решать вероятностные задачи, доказывать вероятностные теоремы и как их излагать.

Задачи по теории вероятностей [2006] Ширяев

Настоящее учебное пособие содержит более 1500 задач (включая подзадачи), непосредственно «привязанных» к учебнику автора в двух книгах «Вероятность-1» и «Вероятность-2» и упорядоченных в соответствии с содержанием этих книг. Многие задачи сопровождаются указаниями к их решению. В приложении дан аннотированный указатель основных обозначений и важных понятий теории вероятностей, комбинаторики и теории потенциала, используемых в пособии. Пособие рассчитано на студентов высших учебных заведений по физико-математическим направлениям и специальностям. Может служить учебным пособием для аспирантов и справочным пособием для специалистов.

Вероятность. В 2 книгах (3-е изд.) [2007] Ширяев

Настоящее издание (в двух книгах «Вероятность-1» и «Вероятность-2») представляет собой расширенный курс лекций по теории вероятностей.

Первая книга «Вероятность-1» содержит материал, относящийся к элементарной теории вероятностей, и может служить пособием для первичного ознакомления с предметом. Большой материал отводится математическим основаниям теории вероятностей, базирующимся на аксиоматике Колмогорова, рассматриваются основные вопросы предельных теорем теории вероятностей.

Приведен также очерк истории становления теории вероятностей. В историко-библиографической справке указываются источники приводимых результатов, даются комментарии и указывается дополнительная литература. В конце каждого параграфа даются задачи. Книги рассчитаны на студентов физико-математических специальностей университетов. Могут служить учебным пособием для аспирантов и справочным пособием для специалистов.

Вероятность [1979] Ширяев

Настоящее учебное пособие представляет расширенный трехсеместровый курс лекций по теории вероятностей. Первая часть посвящена элементарной теории вероятностей и предназначена для первичного ознакомления с предметом. Во второй части излагаются математические основания теории вероятностей, базирующиеся на аксиоматике Колмогорова. В третьей части рассматриваются случайные процессы с дискретным временем — случайные последовательности (стационарные, марковские, мартингалы). Во введении дан исторический очерк становления теории вероятностей. В историко-библиографической сиравке приводятся источники результатов и указывается дополнительная литература. В конце каждого параграфа даются задачи. Книга рассчитана на студентов и аспирантов математических отделений университетов.

Предельные теоремы для случайных процессов [2 тома][1994] Жакод, Ширяев

Содержится систематическое изложение теории функциональных и конечномерных предельных теорем для классов случайных процессов семимаргингального вида, включающих процессы с независимыми приращениями, диффузионные, точечные, образованные суммами случайных величин в случайном числе и др. Даются применения к статистике случайных процессов. Необходимый для функциональных предельных теорем аппарат включает представляющий и самостоятельный интерес материал о стохастическом исчислении для семимартингалов, проблемы март

Источник

Математическая статистика для чайников

В данном разделе вы найдете ссылки на лучшие материалы по математической статистике (мат.статистика, матстат, МС): учебники, сайты, видеоуроки, таблицы, примеры и другие материалы, которые помогут изучить этот предмет.

Чаще всего математическую статистику изучают вместе с теорией вероятностей (курс «Теория вероятностей и математическая статистика», ТВиМС). Полезные материалы по теории вероятностей (онлайн учебник, калькуляторы, примеры решений и т.п.) вы найдете тут.

Нет времени? Предлагаем решение математической статистики на заказ. От 100 рублей за подробное решение задачи с выводами в Word (и расчетный файл в Excel, если нужен), диаграммы и графики, пояснения. Изучите и успешно защищайтесь.

Учебники и лекции

Примеры решений

Теория теорией, а очень полезны будут решенные примеры по разным разделам математической статистики: можно понять ход решения типовой задачи, узнать формулы и правила расчета, подсмотреть офомление и графики и т.п.

Решебник онлайн

Ищете готовое решение примера по мат. статистике? Попробуйте тут:

Видеоуроки

Сжатый по времени, но ёмкий курс по основам статистики от Анатолия Карпова. Три части по часу каждая. Использование специальной программы для расчетов и визуализации. Ниже первая часть, от нее можете вы можете перейти ко второй и третьей.

Темы: 1. Генеральная совокупность и выборка 2. Сравнение средних 3. Корреляция и регрессия.

Источник

Лучшие учебники по теории вероятности и математической статистике

NEW. Королюк В.С., Портенко Н.И., Скороход А.В. Турбин А.Ф. Справочник по теории вероятностей и матстатистике. 2-е изд. перераб. доп. 1985 год. 640 стр. djvu. 13.2 Мб.
Справочник представляет собой расширенное и переработанное издание книги «Справочник по теории вероятностей и математической статистике» под редакцией В. С. Королюка, вышедшей в 1978 г. в издательстве «Наукова думка». По широте охвата основных идей, методов и конкретных результатов современной теории вероятностей, теории случайных процессов и отчасти математической статистики «Справочник» является единственным изданием подобного рода.
Для научных работников и инженеров.

Агекян. Теория вероятностей для астронов и физиков. 260 стр. Размер 1.7 Мб. В книге зложен материал так, чтобы использовать его при обработке результатов измерений физикам и астрономам. Полезная книга при расчете погрешностей.

И.И. Баврин. Теория вероятностей математическая статистика. 2005 год. 161 стр. djv. 1.7 Мб.
Изложены основы теории вероятностей и математической статистики в приложении к физике, химии, биологии, географии, экологии, приведены упражнения для самостоятельной работы Все основные понятия и положения иллюстрируются разобранными примерами и задачами
Для студентов естественнонаучных специальностей педагогических вузов Может быть использован студентами других вузов

Бородин А. Н. Элементарный курс теории вероятностей и математической статистики. 1999 год. 224 стр. djvu. 3.6 Мб.
Учебник содержит систематическое изложение основных разделов элементарного курса теории вероятностей и математической статистики. К традиционным разделам добавлен и один новый — «Процедура рекуррентного оценивания», ввиду особой важности этой процедуры для приложений. Теоретический материал сопровождается большим количеством примеров и задач из разных областей знаний.

Бочаров П. П., Печинкин А. В. Теория вероятностей. Математическая статистика. 2005 год. 296 стр. djvu. 2.8 Мб.
В первой части рассматриваются основные понятия теории вероятностей, при этом используются относительно простые математические конструкции, но, тем не менее, изложение ведется на основе аксиоматического построения, предложенного академиком А. Н. Колмогоровым. Во второй части излагаются основные понятия математической статистики. Рассматриваются наиболее часто встречающиеся задачи оценивания неизвестных параметров и проверки статистических гипотез и описываются основные методы их решения. Каждое приведенное положение иллюстрируется примерами. Излагаемый материал в целом соответствует государственному образовательному стандарту.
Студентам, аспирантам и преподавателям вузов, научным работникам различных специальностей и желающим получить первое представление о теории вероятностей и математической статистике.

В.Н. Вапник. Восстановление зависимостей по эмпиричиским данным. 1979 год. 449 стр. djvu. 6.3 Мб.
Монография посвящена проблеме восстановления зависимостей по эмпирическим данным. В ней исследуется метод минимизации риска на выборках ограниченного объема, согласно которому при восстановлении функциональной зависимости следует выбирать такую функцию, которая удовлетворяет определенному компромиссу между величиной, характеризующей ее «сложность», и величиной, характеризующей степень ее приближения к совокупности эмпирических данных. Рассмотрено применение этого метода к трем основным задачам восстановления зависимостей: задаче обучения распознаванию образов, восстановления регрессии, интерпретации результатов косвенных экспериментов. Показано, что учет ограниченности объема эмпирических данных позволяет решать задачи распознавания образов при большой размерности пространства признаков, восстанавливать регрессионные зависимости при отсутствии модели восстанавливаемой функции, получать устойчивые решения некорректных задач интерпретации результатов косвенных экспериментов. Приведены соответствующие алгоритмы восстановления зависимостей.

А.И. Волковец, А.Б Гуринович. Теория вероятностей и математическая статистика. Конспект лекций. 2003 год. 84 стр. PDF. 737 Kб.
Конспект лекций по курсу «Теория вероятностей и математическая статистика» включает в себя 17 лекций по темам, определенным типовой рабочей программой изучения данной дисциплины. Целью изучения является усвоение основных методов формализованного описания и анализа случайных явлений, обработки и анализа результатов физических и численных экспериментов. Для изучения данной дисциплины студенту необходимы знания, полученные при изучении разделов «Ряды», «Множества и операции над ними», «Дифференциальное и интегральное исчисления» курса высшей математики.

Володин. Лекции по теоии вероятностей и математической статистике. 2004 год. 257 стр. Размер 1.4 Мб. PDF. В теорвере делаетс упор на методы построения вероятностых моделей и реализацию этих методов на реальных задачах естествознания. В статистике основное внимание уделяется методам вычисления риска конкретных статистических правил.

Вентцель, Овчаров. Теория вероятностей и ее инженерные приложения. 2000 год. 480 стр. djvu. 10.3 Мб.
В книге дано систематическое изложение основ теории вероятностей под углом зрения их практических приложений по специальностям: кибернетика, прикладная математика, ЭВМ, автоматизированные системы управления, теория механизмов, радиотехника, теория надежности, транспорт, связь и т. д. Несмотря на разнообразие областей, к которым относятся приложения, все они пронизаны единой методической основой.
Для студентое высших технических учебных заведений. Может быть полезна преподавателям, инженерам и научным работникам разных профилей, которые в своей практической деятельности сталкиваются с необходимостью ставить и решать задачи, связанные с анализом случайных процессов.

Вентцель, Овчаров. Теория вероятностей. 1969 год. 365 стр. djvu. 8.3 Мб.
Книга представляет собой сборник задачи и упражнений. Все задачи имеют ответ, а болшинство имеют решения.

Н. Я. ВИЛЕНКИН, В. Г. ПОТАПОВ. ЗАДАЧНИК-ПРАКТИКУМ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ С ЭЛЕМЕНТАМИ КОМБИНАТОРИКИ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ. Уч.пособие. 1979 год. 113 стр. djvu. 1.3 Мб.
Предлагаемая вниманию читателя книга является задачником-практикумом по курсу «Теория вероятностей». Задачник состоит из трех глав, которые в свою очередь разбиты на параграфы. В начале каждого параграфа предельно кратко приводятся основные теоретические сведения, затем даются подробно разобранные типовые примеры и, наконец, предлагаются задачи для самостоятельного решения, снабженные ответами и указаниями. Задачник содержит также тексты лабораторных работ, выполнение которых поможет студенту-заочнику лучше усвоить основные понятия математической статистики.

Гмурман. Теория вероятностей и математическая статистика. 2003 год. 480 стр. DJVU. 5.8 Mб.
Книга содержит в основном весь материал программы по теории вероятностей и математической статистике. Большое внимание уделено статистическим методам обработки экспериментальных данных. В конце каждой главы помещены задачи с ответами. Предназначается для студентов вузов и лиц, использующих вероятностные и статистические методы при решении практических задач.

Колмогоров. Теория вероятностей. Размер 2.0 Мб.

Кибзун и др. Теория вероятностей и математическая статистика. Уч. пособие. Базовый курс с примерами и задачами. Размер 1.7 Мб. djvu. 225 стр.

М. Кац. Статистическая независимость в теории вероятностей, анализе и теории чисел. 152 стр.ю djv. 1.3 Мб.
В книге излагаются в очень доступной и увлекательной форме применения некоторых идей теории вероятностей в других областях математики. Основная часть книги посвящена понятию статистической независимости.
Книга будет полезной и интересной для студентов, специалистов-математиков, физиков, инженеров.

М. Кац. Вероятность и смежные вопросы в физике. 408 стр. djv. 3.8 Мб.
Автор знаком советскому читателю по переводу его работы «Статистическая независимость в теории вероятностей, анализе и теории чисел» (ИЛ, 1963). Его новая книга в основном посвящена одной из интереснейших задач физики: описать, как система из очень большого числа частиц (газ в сосуде) приходит в состояние равновесия, и объяснить, как необратимость этого процесса во времени согласуется с обратимостью во времени исходных уравнений. Наибольшее внимание уделяется вероятностному аспекту проблемы; рассматриваются статистические модели, имитирующие основные черты задачи. Две первые главы имеют и самостоятельный интерес — на удачно подобранных примерах автор показывает, каким образом понятие вероятности возникает в математических и физических задачах и какой аналитический аппарат использует теория вероятностей. В данное издание включены статьи Каца и других авторов, касающиеся затронутых в книге вопросов.

Кендалл. Стьюарт. Многомерный статистический анализ и временные ряды. 375 стр. DJVU. 8.2 Мб.
Книга является последним томом трехтомного курса статистики М. Кендалла и А. Стьюарта, первый том которого вышел в 1966 г. под названием «Теория распределений:», а второй — в 1973 г. под названием «Статистические выводы и связи>.
В книге содержатся сведения по дисперсионному анализу, планированию экспериментов, теории выборочных обследований, многомерному анализу и временным рядам.
Как и первые два тома, книга содержит много практических рекомендаций и примеров их применения, а изложение сочетает более или менее подробный вывод основных результатов с относительно кратким перечислением большого количества более частных сведений.
Книга будет представлять интерес для студентов и аспирантов, специализирующихся в области математической статистики, а также для широкого круга научных работников, имеющих дело с ее приложениями.

Кендалл. Стьюарт. ТЕОРИЯ РАСПРЕДЕЛЕНИЙ. Том 1. 590 стр. 10,3 Мб. 6.1 Мб.
Содержание: Частотные распределения. Меры расположения и рассеяния. Моменты и семиинварианты. Характеристические функции. Стандартные распределения. Исчисление вероятностей. Вероятность и статистические выводы. Случайный выбор. Стандартные ошибки. Точные выборочные распределения. Аппроксимация выборочных распределений. Аппроксимация выборочных распределений. Порядковые статистики. Многомерное нормальное распределение и квадра¬тичные формы. Распределения связанные с нормальным.

Кобзарь А.И. Прикладная математическая статистика. Для инженеров и научных работников. 2006 год. 814 стр. djvu. 7.7 Мб.
В книге рассматриваются способы анализа наблюдений методами математической статистики. Последовательно на языке, доступном специалисту — не математику, излагаются современные методы анализа распределений вероятностей, оценки параметров распределений, проверки статистических гипотез, оценки связей между случайными величинами, планирования статистического эксперимента. Основное внимание уделено пояснению примеров применения методов современной математической статистики.
Книга предназначена для инженеров, исследователей, экономистов, медиков, аспирантов и студентов, желающих быстро, экономично и на высоком профессиональном уровне использовать весь арсенал современной математической статистики для решения своих прикладных задач.

Е.Л. Кулешов. Теория вероятностей. Лекции для физиков. 2002 год. 116 стр. djvu. 919 Кб.
Для студентов старших курсов.

Лазакович, Сташуленок, Яблонский. Курс теориивероятностей. Учебное пособие. 2003 год. 322 стр. PDF. 2.9 Мб.
В основу учебного пособия положен годовой курс лекций, которые авторы в течение ряда лет читали для студентов механико-математического факультета Белорусского государственного университета. В книге содержатся следующие разделы: вероятностные пространства, независимость, случайные величины, числовые характеристики случайных величин, характеристические функции, предельные теоремы, основы теории случайных процессов, элементы математической статистики и приложения, в которых приведены таблицы основных вероятностных распределений и значения некоторых из них. Большинство глав включает в себя дополнения, куда вынесены вспомогательный материал и темы для самостоятельного изучения.
Изложение сопровождается большим количеством примеров, упражнений и задач, иллюстрирующих основные понятия и поясняющих возможные применения доказанных утверждений.
Для студентов математических специальностей университетов.

Львовский Б.Н. Статистические методы построения эмпирических формул: Учеб. пособие. 2-е изд.,перераб. доп. 1988 год. 239 стр. djvu. 2.3 Мб.
Во 2-м издании пособия изложены основные методы обработки опытных данных. Подробно описаны способы предварительной обработки результатов наблюдений. Рассмотрены статистические методы построений эмпирических формул, метод максимума Правдоподобия, метод средних и коифлюэнтный анализ. Освещена методика планирования и обработки активных экспериментов. Даны основы дисперсионного анализа.

Ж. Невё. Математические основы теории вероятностей. 1969 год. 310 стр. djv. 3.0 Мб.
Автор книги известен своими работами по применению методов функционального анализа и теории меры к вопросам теории вероятностей. Мастерски написанная книга содержит компактное и в то же время полное изложение оснований теории вероятностей. Включено много полезных дополнений и упражнений.
Книга может служить хорошим учебником для студентов и аспирантов, желающих серьезно изучить теорию случайных процессов, и отличным справочником для специалистов.

Д.Т. Письменный. Конспект лекций по теории вероятностей и математической статистике. 2004 год. 256 стр. djvu. 1.4 Мб.
Настоящая книга представляет собой курс лекций по теории вероятностей математической статистике. Первая часть книги содержит основные понятия и теоремы теории вероятностей, такие как случайные события, вероятность, случайные функции, корреляция, условная вероятность, закон больших чисел и предельные теоремы. Втора часть книги посвящена математической статистике, в ней излагаются основ) выборочного метода, теории оценок и проверки гипотез. Изложение теоретического материала сопровождается рассмотрением большого количества примеров и задач, ведется на доступном, по возможности строгом языке.
Предназначена для студентов экономических и технических вузов.

Поддубная О.Н. Лекции по теории вероятностей. 2006 год. 125 стр. pdf. 2.0 Мб.
Понятно написаны. К достоинствам курса, например, можно отнести то, что теоретические утверждения поясняются примерами.

Ю.В. Прохоров, Ю.А. Розанов. Теория вероятностей. Основные понятия. Предельные теоремы. Случайные процессы. 1967 год. 498 стр. djvu. 7.6 Mб.
Книга написана известными американскими математиками и посвящена одному из важных современных направлений теории вероятностей, недостаточно отраженному в литературе на русском языке. Авторы тяготеют к содержательным результатам, а не к максимальной общности, рассматривают ряд примеров и приложений. В книге удачно сочетаются высокий научный уровень изложения и одновременно доступность для студенческой аудитории.
Для специалистов по теории вероятностей, физиков, инженеров, аспирантов и студентов университетов.

Пытьев Ю. П. Шишмарев И. А. Курс теории вероятностей и математической статистики для физиков. Учеб. пособие. МГУ 1983 год. 256 стр. djvu. 4.6 Мб.
В основу книги положен полугодовой курс лекций, читаемый авторами на физическом факультете. Большое место уделено теории случайных процессов: марковских и стационарных. Изложение математически строгое, хотя и не основанное на использовании интеграла Лебега. Часть курса, посвященная математической статистике, содержит разделы, ориентированные на приложения к задачам автоматизации планировании, анализа и интерпретации физических экспериментов. Изложена статистическая теория измерительно-вычислительного комплекса «прибор+ЭВМ», позволяющая существенно улучшить параметры реального экспериментального оборудования путем обработки данных на ЭВМ. Включены элементы теории статистической проверки гипотез, используемые в задаче интерпретации экспериментальных данных.

Савельев. Элементарная теория вероятностей. Учебное пособие, Новосибирский ГУ, 2005.
Часть 1 посвящена теории. Размер 660 Кб. Часть 2 посвящкна разбору примеров. Размер 810 Кб. Часть 3. Итегралы Римана и Стилтьеса. 240 стр. djvu. 5.0 Мб. В части 3 пособия подробно описываются элементы дифференциального и интегрального исчислений, которые использовались в части I. Объединен материал из пособий автора «Лекции по математическому анализу, 2.1» (Новосибирск, НГУ, 1973) и «Интегрирование равномерно измеримых, функций» (Новосибирск, НГУ, 1984). Основным объектом является интеграл Стилтьеса. Он определяется как ограниченный линейный функционал на пространстве функций без сложных разрывов, которое рассматривалось в части 1. Интеграл Стилтьеса широко применяется не только в теории вероятностей, но и в геометрии, механике и других областях математики. Приложение в части 3 пособия дополняет приложение в части 2. Для полноты изложения в части 3 повторяются некоторые места из части 1. В приложении сохранена нумерация страниц и пунктов пособия автора «Лекции по математическому анализу».

Саврасов Ю.С. Оптимальные решения. Лекции по методам обработки измерений. 2000 год. 153 стр. djvu. 1.1 Мб.
Рассматриваются методы обработки измерений, обеспечивающие наиболее полное извлечение полезной информации об измеряемых параметрах или наблюдаемых явлениях. Излагаемые методы относятся к области теории вероятностей, математической статистики, теории решений, теории полезности, теории фильтрации для динамических систем с дискретным временем. Основой материала книги послужили лекции, которые автор читал в 1994-1997 гг. студентам третьего курса базовой кафедры «Радиофизики» Московского физико-технического института. В предлагаемом виде книга будет полезна студентам физических и технических специальностей, инженерам в области радиолокации, обработки информации и автоматизированных систем управления.
Разобрано много примеров.

Самойленко Н.И., Кузнецов А.И., Костенко А.Б.Теория вероятностей. Учебник. 2009 год. 201 стр. PDF. 2.1 Мб.
Учебник знакомит с основными понятиями и методами теории вероятностей. Приведенные методы иллюстрируются типовыми примерами. Каждая тема заканчивается практическим разделом для самостоятельного приобретения навыков по использованию методов теории вероятностей при решении стохастических задач.
Для студентов высших учебных заведений.
Примеры из учебниеа: бросание монеты – опыт, выпадение «орла» или «решки» – события; вытаскивание карты из преферансной колоды – опыт, появление красной или черной масти – события; проведение лекции – опыт, присутствие студента на лекции – событие.

Секей. Парадоксы теории вероятностей и математической статистики. Размер 3.8 Мб. djv. 250 стр.

Тарасов Л. В. Закономерности окружающего мира. В 3-х книгах. 2004 год. djvu.
1. Случайность, необходимость, вероятность. 384 стр. 6.8 Мб.
Данная книга является достаточно популярным и в то же время строго научным развернутым введением в теорию вероятностей, включающим в себя подробный анализ рассматриваемых проблем, широкие обобщения философского плана, отступления исторического характера. Книга имеет четко выраженный учебный характер; ее материал строго структурирован, построен на доказательной основе, снабжен большим количеством графиков и схем; приведено значительное количество оригинальных задач, из которых часть разбирается в книге, а часть предлагается читателю для самостоятельного решения. Книга представляет собой законченный труд и при этом является первой книгой трехтомника автора.
2. Вероятность в современном обществе. 360 стр. 4.5 Мб.
Данная книга демонстрирует принципиальную роль теории вероятностей в современном обществе, которое основывается на высокоразвитых информационных технологиях. Книга является достаточно популярным и в то же время строго наунаучным развернутым введением в исследование операций и теорию информации. Она имеет четко выраженный учебный характер; ее материал строго структурирован, построен на доказательной основе, снабжен большим количеством графиков и схем; приведено значительное количество задач, из которых часть разбирается в книге, а часть предлагается читателю для самостоятельного решения.
3. 440 стр. 7.5 Мб. Эволюция естественно-научного знания.
Здесь в популярной и систематизированной форме анализируется эволюция естественнонаучных картин мира: от научных программ античности к механической картине, затем к электромагнитной картине и, наконец, к современной картине. Демонстрируется переход от динамических (жестко детерминированных) закономерностей к статистическим (вероятностным) закономерностям по мере постепенно углубляющегося научного постижения человеком окружающего мира. Достаточно подробно рассматривается эволюция представлений квантовой физики, физики элементарных частиц, космологии. В заключение обсуждаются идеи самоорганизации открытых неравновесных систем (возникновение диссипативных структур).
Для широкого круга читателей и в первую очередь для школьников старших классов (начиная с 9-го класса), а также для студентов техникумов и высших учебных заведений.

Теребиж В. Ю. Введение в статистическую теорию обратных задач. 2005 год. 376 стр. djvu. 5.3 Мб.
В книге изложена теория обратных задач, часто встречающихся в физике и технике. Основываясь на понятиях математической статистики, анализируется ряд известных методов обращения информации, в частности: оптимальная фильтрация Колмогорова—Винера, метод максимума энтропии, регуляризация Филлипса—Тихонова и восстановление изображений с помощью итерационных процедур. Показано, что последовательное применение методов статистики с учетом априорной информации, реально доступной исследователю, позволяет получить устойчивые и эффективные решения обратных задач. Теоретическое рассмотрение сопровождается большим числом примеров; приведены сводки расчетных формул. В качестве приложений изучаются проблема предельной разрешающей силы оптических приборов, классическая задача непараметрического оценивания спектра мощности временного ряда и актуальная в последние годы фазовая проблема. Книга рассчитана на специалистов различных областей науки и техники. Она доступна студентам университетов и технических учебных заведений.

Феллер. Введение в теорию вероятностей и ее приложенния. Наиболее подробное и наиболее полное изложение матерала на эту тему из всего, что я видел. В 2-х томах, djvu.

Д. Худсон. Статистика для физиков. 2-е изд. доп.1970 год. 295 стр. djvu. 2.1 Мб.
Книга представляет собой лекции по теории вероятностей и элементарной статистике. Рассматриваются задачи проверки гипотез и метод наименьших квадратов. В дополнениях, написанных Дж. Малви и У. К. Гамильтоном рассматриваются статистические методы обработки экспериметнальных данных и метод наименьших квадратов при проверке линейных гипотез.

Чжун, Уильямс. Введение в стохастическое интегрирование. 1987 год. 150 стр. djvu. 1.4 Mб.
Книга написана известными американскими математиками и посвящена одному из важных современных направлений теории вероятностей, недостаточно отраженному в литературе на русском языке. Авторы тяготеют к содержательным результатам, а не к максимальной общности, рассматривают ряд примеров и приложений. В книге удачно сочетаются высокий научный уровень изложения и одновременно доступность для студенческой аудитории.
Для специалистов по теории вероятностей, физиков, инженеров, аспирантов и студентов университетов.

А.Н. Ширяев. Вероятность (есть все). Классика. Размер 10.9 Мб. djv. 580 стр.
Программа для чтения файлов djvu, djv выдает ошибку и закрывается с дурацким извинением за неудобство. Я просмотрел всю книгу в своем браузере с плагином для этих файлов. Выяснил, что в книге имеются три пустых страницы со сбоем нумерации. Это и приводит к ошибке. Перезаписать сейчас нет времени.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *