Таблица горнера как пользоваться
Сущность схемы
Следующий тип уравнения пусть содержит третью степень ax3 + bx2 + c + d = 0. Это равенство у многих вызывает затруднения. Хотя и существуют различные способы, позволяющие решить такое уравнение, например, формула Кордана, но их уже нельзя применять для степеней пятого и высших порядков. Поэтому математики задумывались об универсальном способе, с помощью которого можно было бы вычислять уравнения любой сложности.
Алгоритм, предложенный Горнером, на самом деле был открыт раньше итальянским математиком и доктором медицины Паоло Руффини. Он первый доказал невозможность нахождения радикала в выражениях пятой степени. Но его работа содержала много противоречий, которые не позволили её принять математическим миром учёных. Основываясь на его трудах, в 1819 году британец Уильям Джордж Горнер опубликовал способ приближённого нахождения корней многочлена. Эта работа была напечатана Королевским научным обществом и получила название метод Руффини-Горнера.
После шотландец Огастес де Морган расширил возможности использования метода. Способ нашёл применение в теоретико-множественных соотношениях и теории вероятности. По сути, схема является алгоритмом для вычисления частного и остатка отношения записи Р (х) на х-с.
Принцип метода
Впервые учащихся знакомят со способом нахождения корней с использованием схемы Горнера в высших классах средней школы на уроках алгебры. Объясняют её на примере решения уравнения третьей степени: x3 + 6x — x — 30 = 0. При этом в условии задачи дано, что корнем этого уравнения является цифра два. Задача заключается в том, чтобы определить другие корни.
Таким образом, искомое выражение можно переписать в виде (x — 2)* (x 2 + 8x + 15) = 0. Далее, для того чтобы найти решение, нужно выполнить следующее:
Все три корня найдены. Но тут возникает резонный вопрос, где же используется в примере схема Горнера? Так вот, всё это громоздкое вычисление можно заменить на скоростной алгоритм решения. Состоит он из простых действий. Вначале нужно начертить таблицу, содержащую несколько столбцов и строчек. Начиная со второго столбца начальной строчки, записывают коэффициенты, стоящие в уравнении исходного многочлена. В первом столбике ставят то число, на которое будет выполняться деление, то есть потенциальные члены решения (х0).
После того как в таблицу записали выбранное х0, заполнение происходит по следующему принципу:
Для рассматриваемого примера при подстановке двойки строчка будет состоять из ряда: 2, 1, 8, 15, 0. Таким образом, находятся все члены. При этом схема работает для любого порядка степенного уравнения.
Пример использования
Для того чтобы понять, как пользоваться схемой Горнера, нужно подробно рассмотреть типовой пример. Пусть требуется определить кратность корня х0 многочлена p (x) = x 5 — 5x 4 + 7x 3 — 2x 2 + 4x — 8. Часто в задачах приходится подбирать корни методом перебора, но для того чтобы сэкономить время, будем считать, что они уже известны и их нужно просто проверить. Тут следует понимать, что применяя схему, расчёт всё равно будет быстрее, чем использование других теорем или метода понижения.
В последнем выражении двойка не может быть рациональным решением. То есть в исходном многочлене цифра два используется три раза, а значит можно записать: (x — 2) 3 * (x 2 + x + 1). То, что двойка не является корнем квадратного выражения, можно понять по следующим фактам:
Поэтому далее схему можно не использовать. Окончательное разложение на множители будет иметь следующий вид: (x — 2) 3 * (x 2 + x + 1). Соответственно, х0 = 2 является корнем третьей кратности.
Таким образом, применение системы позволяет избавиться от использования сложных числителей и делителей. Все действия сводятся к простому перемножению целых чисел и выделения нулей.
Пояснение способа
Подтверждение справедливости существования схемы Горнера объясняется рядом факторов. Представим, что есть многочлен третьей степени: x3 + 5x – 3x + 8. Из этого выражения икс можно вынести за скобку: x * (x2 + 5x – 3) + 8. Из полученной формулы можно снова вынести икс: x * (x * (x + 5) – 3) + 8 = x * (x* ((x * 1) + 5) – 3) + 8.
А это значит, что все коэффициенты рассматриваемых многочленов равны, в частности, (x0)b) = a0. Используя это, можно утверждать, что какими бы ни были числа a0 и b0, икс всегда является делителем, то есть a0 всегда можно разделить на корни многочлена. Иными словами, найти рациональные варианты решения.
В математике правильной записью метода будет выражение: Pn(x) = ∑i = 0naixn−i = a0xn + a1xn − 1 + a2xn − 2 +…+ an − 1x + an. В нём значение i изменяется от нуля до эн, а сам многочлен делится на бином x – a. После выполнения этого действия получается выражение, степень которого на единицу меньше от исходного. Другими словами, определяется как n – 1.
Расчёт на онлайн-калькуляторе
Использовать ресурсы, предоставляющие доступ к вычислениям корней высших степеней многочленов, довольно удобно. Чтобы воспользоваться такими сайтами, особые знания в математике или программировании иметь не нужно. Всё, что необходимо пользователю — это доступ к интернету и браузер, поддерживающий работу Java скриптов.
Существует несколько десятков таких сайтов. При этом некоторые из них могут просить за предоставленное решение денежное вознаграждение. Хотя большинство ресурсов бесплатны и не только рассчитывают корни в степенных уравнениях, но и предоставляют подробное решение с комментариями. Кроме этого, на страницах расчётчиков любой желающий сможет ознакомиться с кратким теоретическим материалом и рассмотреть решение примеров различной сложности. Так что вопросов с понятием, откуда взялся ответ, возникнуть не должно.
Из всего множества считающих онлайн–калькуляторов по схеме Горнера можно выделить следующие три:
Программы, используемые для расчётов, отличаются интуитивно понятным интерфейсом и не содержат рекламного и вредоносного кода. Выполнив несколько вычислений на этих ресурсах, пользователь вполне сможет самостоятельно научится определять корни, используя метод Горнера.
При этом онлайн-калькуляторы полезны не только учащимся, но и инженерам, проводящим сложные вычисления. Ведь самостоятельный расчёт требует внимания и сосредоточенности. Любая незначительная ошибка в итоге приведёт к неверному ответу. В то же время появление ошибки при вычислениях с помощью онлайн-расчётчиков невозможно.
Схема Горнера. Корни многочлена
Разделы: Математика
Цели урока:
Оборудование: карточки для работы в группах, плакат со схемой Горнера.
Метод обучения: лекция, рассказ, объяснение, выполнение тренировочных упражнений.
Форма контроля: проверка задач самостоятельного решения, самостоятельная работа.
Ход урока
1. Организационный момент
2. Актуализация знаний учащихся
— Какая теорема позволяет определить, является ли число корнем данного уравнения (сформулировать теорему)?
Теорема Безу. Остаток от деления многочлена Р(х) на двучлен х-с равен Р(с), число с называют корнем многочлена Р(х), если Р(с)=0. Теорема позволяет, не выполняя операцию деления, определить, является ли данное число корнем многочлена.
— Какие утверждения облегчают поиск корней?
а) Если старший коэффициент многочлена равен единице, то корни многочлена следует искать среди делителей свободного члена.
б) Если сумма коэффициентов многочлена равна 0, то один из корней равен 1.
г) Если все коэффициенты положительны, то корнями многочлена являются отрицательные числа.
д) Многочлен нечетной степени имеет хотя бы один действительный корень.
3. Изучение нового материала
При решении целых алгебраических уравнений приходиться находить значения корней многочленов. Эту операцию можно существенно упростить, если проводить вычисления по специальному алгоритму, называемому схемой Горнера. Эта схема названа в честь английского ученого Уильяма Джорджа Горнера. Схема Горнера это алгоритм для вычисления частного и остатка от деления многочлена Р(х) на х-с. Кратко, как он устроен.
Схема Горнера
Схема Горнера – способ деления многочлена
Задача решена, осталось только записать ответ:
Полученный результат означает, что
$$x^4+3x^3+4x^2-5x-47=(x+3)(x^3+0\cdot x^2 +4x-17)+4=(x+3)(x^3+4x-17)+4$$
$$x^4+3x^3+4x^2-5x-47=(-3)^4+3 \cdot (-3)^3-5 \cdot (-3)-47=4.$$
Т.е. схему Горнера можно использовать, если необходимо найти значение многочлена при заданном значении переменной. Если наша цель – найти все корни многочлена, то схему Горнера можно применять несколько раз подряд, – до тех пор, пока мы не исчерпаем все корни, как рассмотрено в примере №3.
Можно, конечно, просто переписать таблицу заново, но при заполнении вручную это займет немало времени. Тем более, что чисел, проверка которых окончится неудачей, может быть несколько, и каждый раз записывать новую таблицу затруднительно. При вычислении «на бумаге» красные строки можно просто вычёркивать.
Учитывая равенство (2), равенство (1) можно переписать в такой форме:
С учетом равенства (4), равенство (3) перепишем в такой форме:
Полученный результат можно записать так (это продолжение равенства (6)):
Вообще, обычно оформление таких примеров состоит из таблицы, в которой перебираются возможные варианты корней, и ответа:
Из таблицы следует вывод, полученный нами ранее с подробным решением:
Конечно, данный метод подбора малоэффективен в общем случае, когда корни не являются целыми числами, но для целочисленных корней метод довольно-таки неплох.
Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).
Что такое Схема Горнера
Схема Горнера — это очень быстрый метод деления многочленов.
Примеры задач с решениями методом Горнера
Пример 1
1. Делаем такую таблицу:
Обратите внимание, что линейный двучлен x — 2 перешёл в таблицу как только «2» (одна двойка с противоположным знаком, а x остаётся вне таблицы).
Т. е. если бы деление было на x + 3, то в таблицу бы записали только «-3».
2. Во вторую ячейку мы просто переписываем то, что сверху:
3. Теперь постоянно повторяющаяся схема: «то, что стоит слева, умножить на фиксированное число (это у нас 2), и добавить то, что сверху». И так до конца.
4. «То, что стоит слева, умножить на фиксированное число, и добавить то, что сверху«.
5.» То, что стоит слева, умножить на фиксированное число, и добавить то, что сверху«.
То, что у нас получился в конце 0 означает, что x = 2 — это корень исходного уравнения.
Мы переписываем полученный результат, не забывая, что x уменьшается на одну степень, таким образом получается:
Пример 2
1. Опять же обратите внимание, что линейный двучлен x + 2 перешёл в таблицу как только «-2» (потерял x и поменял знак на противоположный).
Ещё немаловажно то, что у нас нет x³ (x в третьей степени), но мы это не игнорируем, записываем в таблицу как 0. Все степени в уравнении должны идти всегда по порядку, прежде, чем его записывать в таблицу.
2. Во вторую ячейку мы просто переписываем то, что сверху:
3. «То, что стоит слева, умножить на фиксированное число, и добавить то, что сверху«.
4. И так до конца таблицы:
Если есть время и это нужно, проверяем результат:
Таблица горнера как пользоваться
Составим таблицу из двух строк: в первой строке запишем коэффициенты многочлена 5x 4 +5x 3 +x 2 −11, расположенные по убыванию степеней переменной x. Заметьте, что данный многочлен не содержит x в первой степени, т.е. коэффициент перед x в первой степени равен 0. Так как мы делим на x−1, то во второй строке запишем единицу:
Следующую ячейку заполним по такому принципу: 1 ⋅ 5 + 5 = 10 :
Аналогично заполним и четвертую ячейку второй строки: 1 ⋅ 10 + 1 = 11 :
Для пятой ячейки получим: 1 ⋅ 11 + 0 = 11 :
И, наконец, для последней, шестой ячейки, имеем: 1 ⋅ 11 + ( −11) = 0 :
Задача решена, осталось только записать ответ:
Как видите, числа, расположенные во второй строке (между единицей и нулём), есть коэффициенты многочлена, полученного после деления 5x 4 +5x 3 +x 2 −11 на x−1. Естественно, что так как степень исходного многочлена 5x 4 +5x 3 +x 2 −11 равнялась четырём, то степень полученного многочлена 5x 3 +10x 2 +11x+11 на единицу меньше, т.е. равна трём. Последнее число во второй строке (ноль) означает остаток от деления многочлена 5x 4 +5x 3 +x 2 −11 на x−1.
В нашем случае остаток равна нулю, т.е. многочлены делятся нацело. Этот результат ещё можно охарактеризовать так: значение многочлена 5x 4 +5x 3 +x 2 −11 при x=1 равно нулю.
Можно сформулировать вывод и в такой форме: так как значение многочлена 5x 4 +5x 3 +x 2 −11 при x=1 равно нулю, то единица является корнем многочлена 5x 4 +5x 3 +x 2 −11.
2. Найдите неполное частное, остаток от деления многочлена